Roof Drainage Design:

Pitfalls to Avoid and Retrofit Options

W. ALLEN PARTNERS INC. Allen Lyte Principal May 3, 2024 BUILDING || SCIENCE || CONSULTING

Roof Drainage Design:

Pitfalls to Avoid and Retrofit Options

Why don't we want standing water on the roof?

Water roof in Apeldoorn, Netherlands

Why don't we want standing water on the roof?

- Roof deterioration
 - Risk of leaks or catastrophic leaks
- Overloading structure
 - Deck deflection or collapse
- Ice and slippery surfaces
- Unwanted birds, feces, and drain plugging debris
- Disease/Infection
 - Legionnaires' disease
 - West Nile

Mould spores

Roof Drainage Design:

Pitfalls to Avoid and Retrofit Options

- Water Concerns on Low Sloped Roofs
- Proactive Roof Drainage Considerations
- Common Pitfalls
- Retrofit Options
- Case Studies

• Risk of leaks

and the bla

• Risk of leaks

and the bla

• or catastrophic leaks

ANA HANDA

• or catastrophic leaks

ANA HANDA

Overloading structure

Deck deflection

ana that

Overloading structure

Deck collapse

Ice and Slippery Surfaces

MARA PAR

Unwanted drain plugging debris

• Unwanted birds, feces, and drain plugging debris

• Legionnaires disease

• West Nile

ALA HANDA

Mould spores

and a har har har

- Design/build drainage system to code NPC
- Check design loads
- Understand drainage anatomy
- Provide redundant drains
- Evenly locate drains
- Provide overflow drains
- Provide adequate slope to drain

MARA BIA

Proactive Roof Drainage Considerations Design/build drainage system to code – NPC

2.4.10.4. Hydraulic Loads from Roofs or Paved Surfaces

1) Except as provided in Sentence (2), the hydraulic load in litres from a roof or paved surface is the maximum 15 min rainfall determined in conformance with Subsection 1.1.3. of Division B of the NBC, multiplied by the sum of

 a) the area in square metres of the horizontal projection of the surface drained, and

 b) one-half the area in square metres of the largest adjoining vertical surface. (See Note A-2.4.10.4.(1).)

- 2) Flow control roof drains may be installed, provided
- a) the maximum drain down time does not exceed 24 h,
- b) the roof structure is designed to carry the load of the stored water,
- c) one or more scuppers are installed not more than 30 m apart along the perimeter of the *building* so that
 - i) up to 200% of the 15-minute rainfall intensity can be handled, and
 - ii) the maximum depth of controlled water is limited to 150 mm,

Proactive Roof Drainage Considerations Design/build drainage system to code – NPC

2.4.10.4. Hydraulic Loads from Roofs or Paved Surfaces

- d) they are located not more than 15 m from the edge of the roof and not more than 30 m from adjacent drains, and
- e) there is at least one drain for each 900 m².

3) Hydraulic loads, in litres per second, for *flow control roof drains* and restricted paved area drains shall be determined according to rain intensity-duration frequency curves as compiled by Environment Canada using 25-year frequencies.

4) Where the height of the parapet is more than 150 mm or exceeds the height of the adjacent wall flashing,

- a) emergency roof overflows or scuppers described in Clause (2)(c) shall be provided, and
- b) there shall be a minimum of 2 roof drains.

Design/build drainage system to code – NPC

		Table 2.4.10.11.	
Maximum	Permitted	Hydraulic Load Drained to a Lo	eader
	Forming	Part of Article 2.4.10.11.	

Table 2.4.10.10. Maximum Permitted Hydraulic Load Drained to a Roof Gutter Forming Part of Article 2.4.10.10.

Circular	Leader	Non-Circular Leader			
Nominal Pipe Size of Leader, NPS	Maximum Hydraulic Load, L	Area of Leader, cm2	Maximum Hydraulic Load, L	140	
2	1 700	20.3	1 520	-	
2%	3 070	31.6	2 770		
3	5 000	45.6	4 500		
4	10 800	81.1	9 700		
5	19 500	126.6	17 600		
6	31 800	182.4	28 700		
8	68 300	324.3	61 500		

Nominal Pipe Size of Gutter, NPS	THE ACCESS OF	Maximum Hydraulic Load, L Slope					
	Area of Gutter, cm2						
		1 in 200	1 in 100	1 in 50	1 in 25		
3	22.8	406	559	812	1 140		
4	40.5	838	1 190	1 700	2 410		
5	63.3	1 470	2 080	2 950	4 170		
6	91.2	2 260	3 200	4 520	6 530		
7	124.1	3 250	4 600	6 500	9 190		
8	162.1	4 700	6 600	9 400	13 200		
10	253.4	8 480	12 000	17 000	23 600		
	Nominal Pipe Size of Gutter, NPS 3 4 5 6 7 8 8 10	Nominal Pipe Size of Gutter, NPS Area of Gutter, cm² 3 22.8 4 40.5 5 63.3 6 91.2 7 124.1 8 162.1 10 253.4	Nominal Pipe Size of Gutter, NPS Area of Gutter, cm ² 1 in 200 3 22.8 406 4 40.5 838 5 63.3 1 470 6 91.2 2 260 7 124.1 3 250 8 162.1 4 700 10 253.4 8 480	Nominal Pipe Size of Gutter, NPS Area of Gutter, cm² Maximum Hys 3 22.8 406 559 4 40.5 838 1 in 200 5 63.3 1 470 2 080 6 91.2 2 260 3 200 7 124.1 3 250 4 600 8 162.1 4 700 6 600 10 253.4 8 480 12 000	Nominal Pipe Size of Gutter, NPS Area of Gutter, cm² Maximum Hydraulic Load, L 3 22.8 1 in 200 1 in 100 1 in 50 4 40.5 838 1 190 1 700 5 63.3 1 470 2 080 2 950 6 91.2 2 260 3 200 4 520 7 124.1 3 250 4 600 6 500 8 162.1 4 700 6 600 9 400 10 2 53.4 8 480 12 000 17 000		

ALA HANDLA

Design/build drainage system to code – NPC

· .

* *

- 610m² Roof
- 2 drains @ 4"Φ

Table 2.4.10.11. Maximum Permitted Hydraulic Load Drained to a Leader Forming Part of Article 2.4.10.11.

* *

Table 2.4.10.10. Maximum Permitted Hydraulic Load Drained to a Roof Gutter Forming Part of Article 2.4.10.10. 4 4

Circular	1	The Allowers	Maximum Hydraulic Load, L						
Nominal Pine Size of Leader NPS	Maximum Hydraulic Load 1	Area of Leader cm2	Maximum Hwtraulic Load, L	Nominal Pipe Size of Gutter NPS	Area of Gutter, cm2		Sk	opa	
noninal r po dec di ceader, ni o	1 300	AND 01 200001, 011-	1 coo	Guide, ne d		1 in 200	1 in 100	1 in 50	1 in 25
2	1700	20.3	1 520	3	22.8	406	559	812	1 140
2%	3 070	31.6	2 770	4	40.5	838	1 190	1 700	2 410
3	5 000	45.6	4 500	5	63.3	1 470	2 080	2 950	4 170
4	10 800	81.1	9 700	6	91.2	2 260	3 200	4 520	6 530
5	19 500	126.6	17 600	7	124.1	3 250	4 600	6 500	9 190
6	31 800	182.4	28 700	8	162.1	4 700	6 600	9 400	13 200
8	68 300	324.3	61 500	10	253.4	8 480	12 000	17 000	23 600
The second se		CONDUIT - CONDUIT -		-					
		11 .	8 8 8	4	PP	9 9		9 9	
		// *							

Check design loads

• 610m² Roof

18m2 Largest Adj. Wall Check Design Loads

- Total Area
 - [(18/2)+610]*25=15,259L
- 2 drains @ 4"Ф
 - 2*10800=21,600L

✓21,600L>15,259L

Table 2.4.10.11. Maximum Permitted Hydraulic Load Drained to a Leader Forming Part of Article 2.4.10.11.

* *

Circular	Leader	Non-Cir	cular Leader			
Nominal Pipe Size of Leader, NPS	Maximum Hydraulic Load, L	Area of Leader, cm2	Maximum Hydraulic Load, L		۲	
2	1 700	20.3	1 520	301		ĩ
2%	3 070	31.6	2 770			
3	5 000	45.6	4 500	۲		
4	10 800	81.1	9 700		P	
5	19 500	126.6	17 600			· · · · ·
6	31 800	182.4	28 700			
8	68 300	324.3	61 500			
	• 🖹 • • •		* *		¥ ¥ ¥ ¥	* *

· .

* *

· .

. .

BUILDING || SCIENCE || CONSULTING

* *

Understand drainage anatomy

and the bla

Provide redundant drains

• Evenly locate drains

BUILDING || SCIENCE || CONSULTING

ALT

Scupper Drains

Scupper Drains

- Provide adequate slope to drain
- Slope structural deck

- Provide adequate slope to drain
- Slope concrete or Concrete topping

- Provide adequate slope to drain
- Full Tapered Insulation

• Provide adequate slope to drain

Tapered insulation

and the bla

- Provide adequate slope to drain
- Crickets

- Provide adequate slope to drain
- Localized tapered
 Insulation
- Fit low curbs
- 20-30% savings

a Astrably

- Drains located at high points
- Deck deflection
- Rooftop equipment blocking drainage path
- Blocked drains
- Mechanically impeded plumbing

• Drains located at high points

Deck deflection

ANA HADA

• Rooftop equipment blocking drainage path

Blocked drains

Mechanically impeded plumbing

and the bla

- Maintain drains and keep clear
- Prevent/Remove mechanical obstructions
- Relocate drains
- Add drains or scuppers
- Add sloped infill
 - Integrated during construction
 - Surface retrofit

Mechanical Pump Drains (AC/Solar DC/Siphon)

Maintain drains and keep clear

- Prevent/Remove mechanical obstructions
 - Avoid internal drain fittings
 - Provide proper drain screens and ballast guards where required
- <u>DON'T REMOVE</u> FLOW CONTROL DEVICES

Relocate drains

Add drains or scuppers

BUILDING || SCIENCE || CONSULTING

2665

- Add sloped infill
 - Integrated during construction
 - Surface retrofit

Tapered Materials Integrated during construction

ANA HABIA

Surface retrofit with material infill

BUILDING || SCIENCE || CONSULTING

Surface retrofit with material infill

THAT HADDA

Mechanical Pump Drains (AC/Solar DC/Siphon)

- Secondary School
- 2-stories
- Autoclave Aerated Concrete (Siporex) structure

- Secondary School
- 2-stories
- Autoclave Aerated Concrete (Siporex) structure

- Roof reaching end of serviceable life
- Siporex deflection mid-span over classrooms

Existing Conventional Built-up Roof

- Original Roof Assembly (top down):
 - Pea Gravel Surfacing;
 - Built-up Felt and Asphalt Roof;
 - Semi-Rigid Fibreglass Insulation;
 - Felt and Asphalt Vapour Retarder; and
 - Siporex Deck

and the bla

Existing Conventional Built-up Roof

- New Roof Assembly (top down):
 - Pea Gravel Surfacing;
 - Built-up Felt and Asphalt Roof;
 - Fibreboard Insulation;
 - Rigid Polyisocyanurate (Foam) Insulation;
 - Felt and Asphalt Vapour Retarder; and
 - Siporex Deck

Original Assembly	New Roof Assembly	Changes
Pea Gravel Surfacing	Pea Gravel Surfacing	No Change
Built-up Felt and Asphalt Roof;	Built-up Felt and Asphalt Roof;	No Change
	Fibreboard Insulation;	Solid substrate
Semi-Rigid Fibreglass Insulation;	Rigid Polyisocyanurate (foam plastic) Insulation;	Less acoustic properties, with higher thermal value
Felt & Asphalt VB	Felt & Asphalt VB	No Change
Siporex Deck	Siporex Deck	No Change

- Design approach:
 - Localized tapered insulation
 - Double flood coat and gravel where required

Localized tapered insulation

and the bla

Case Study 1: Existing Conventional Built-up Roof • Double flood coat and gravel where required

Existing Conventional Modified Bitumen

- Residential Condominium
- 2-stories
- Wood structure

Case Study 2: Existing Conventional Modified Bitumen • Issue: Ice guakes

• Cause: Excessive ponding freezing and shifting

Existing Conventional Modified Bitumen

- Always been drainage issues.
- Why ice quakes after roof replacement?

Existing Conventional Modified Bitumen

- Original Roof Assembly (top down):
 - Pea Gravel Surfacing;
 - Built-up Felt and Asphalt Roof;
 - Fibreboard Insulation;
 - Semi-Rigid Fibreglass Insulation;
 - Kraft Vapour Retarder; and
 - Wood Deck

Existing Conventional Modified Bitumen

- New Roof Assembly (top down):
 - Granular surfaced modified bitumen roof membrane;
 - Asphalt core cover board;
 - Rigid Polyisocyanurate (foam) Insulation;
 - Kraft Vapour Retarder; and
 - Wood Deck

Existing Conventional Modified Bitumen

	Original Assembly	New Roof Assembly	Changes
	Pea Gravel Surfacing	Granular Surfacing	Thinner and lighter
	Built-up Felt and Asphalt Roof;	Modified bitumen roof membrane	Thinner and lighter
	Fibreboard Insulation	Asphalt core cover board	Thinner and denser
	Semi-Rigid Fibreglass Insulation;	Rigid Polyisocyanurate (foam plastic) Insulation	Less acoustic properties
	Kraft Vapour Retarder	Kraft Vapour Retarder	No Change
A	Wood Deck	Wood Deck	No Change

Case Study 2: Existing Conventional Modified Bitumen

• Solutions:

- Full tapered
- Retrofit fill
- New internal drains
- Localized tapered insulation
- New scupper drains

Case Study 2: Existing Conventional Modified Bitumen Approved strategy to control ponding water:

- Localized tapered insulation
 - New scupper drains

Case Study 2: Existing Conventional Modified Bitumen • Oversized sumps around existing drains

Case Study 2: Existing Conventional Modified Bitumen • Add scuppers with oversized sumps

Case Study 2: Existing Conventional Modified Bitumen

Case Study 2b: Second Phase – Replace Built-Up Roof with Hybrid BUR/MB

- Full replacement drainage design included:
 - Infill areas of deflected deck
 - Add over sized drain sumps
 - Provide tapered backslope around the roof perimeter (and increase at end units)
 - Double pour asphalt and gravel at low areas

2-WAY SLOPED TAPERED

2-WAY SLOPED TAPERED

Second Phase – Replace Built-Up Roof with Hybrid BUR/MB

Case Study 2b: Second Phase – Replace Built-Up Roof with Hybrid BUR/MB

Case Study 3:

Existing Conventional Built-up Roof

- Residential Condominium
- 2-stories
- Wood structure

Case Study 3:

Existing Conventional Built-Up Roof

- Reaching end of serviceable life
- Previous phase of roofs changed the built-up roofs to modified bitumen
 - Similar to Case Study 2, the modified bitumen roofs had ponding and reports of ice quakes

Case Study 3: Existing Conventional Built-Up Roof • Always been drainage issues.

Previous modified bitumen replacement did not address

Case Study 3:

Existing Conventional Built-Up Roof

Original Roof Assembly (top down):

- Pea Gravel Surfacing;
- Built-up Felt and Asphalt Roof;
- Fibreboard Insulation;
- Rigid Polyisocyanurate (Foam) Insulation;
- Kraft Vapour Retarder; and
- Wood Deck

Case Study 3:

New Conventional Hybrid Built-Up MB Roof

- New Roof Assembly (top down):
 - Pea Gravel Surfacing;
 - Modified Bitumen Membrane and Asphalt;
 - Fibreboard Insulation;
 - Rigid Polyisocyanurate (Foam) Insulation;
 - Kraft Vapour Retarder; and
 - Wood Deck

Case Study 3: Existing Conventional Built-up Roof

Original Assembly	New Roof Assembly	Changes
Pea Gravel Surfacing	Pea Gravel Surfacing	No Change
Built-up Felt and Asphalt Roof;	Modified bitumen roof membrane	Thinner and lighter
Fibreboard Insulation	Fibreboard Insulation	No Change
Rigid Polyisocyanurate (foam plastic) Insulation	Rigid Polyisocyanurate (foam plastic) Insulation	No Change
Kraft Vapour Retarder	Kraft Vapour Retarder	No Change
Wood Deck	Wood Deck	No Change

ALL HADA

V

Case Study 3:

Existing Conventional Built-Up Roof

- Design Approach:
 - Infill insulation at deflected deck
 - Approaching full tapered insulation
 - Flood coat and gravel double pours

Case Study 3: Existing Conventional Built-Up Roof

- Design Approach:
 - Infill insulation at deflected deck

Case Study 3: Existing Conventional Built-Up Roof

- Design Approach:
 - Tapered insulation

Case Study 3: Existing Conventional Built-Up Roof

- Design Approach:
 - Flood coat and gravel double pours

Case Study 3a: Existing Conventional Modified Bitumen Roof • Poor approach to drainage

Case Study 3a: Existing Conventional Modified Bitumen Roof

- Retrofit Approach:
 - Flood coat and gravel double pours

THAT HADA

Case Study 3/3a: Existing Conventional Modified Bitumen

When is the water too much?

Closing

- Standing water remains 48-hours after rain during weather conducive to drying.
- Water depth exceeding flashing heights.
- Water pressure causing leaks due to increased hydrostatic pressure.

Closing Best to design new roofs to slope to drain.

- Slope structure
- Provide adequate drain sizing and locations
- Add sloped infill where required during roofing

Closing Control existing ponding water

- Add or relocate drains where possible
- Add localized top fill

Roof Drainage Design: Pitfalls to Avoid and Retrofit Options

Thank You W. Allen Partners Inc. www.wapeng.ca Allen Lyte, Principal alyte@wapeng.ca

