Understanding The Impact Of Insulation Distribution

Big picture

Establishing targets

Balsa Wood Bridge

Agenda

- Energy conservation why?
- Codes and standards
 - ASHRAE 90.1
- Building enclosures
 - Details
- What to improve first?
 - Weak points
- Cost analysis
- Online tools

Effective Thermal Performance Of The Building Enclosure

Let's resolve to use less energy!

The Energy Factor

- The energy supply side is limited, dirty, and increasingly expensive
- Across Canada and the US, national, regional, and local governments have shifted their focus to optimizing utilization
- Going forward, increased demand is going to be met by conserving how much we use
 - Demand Side Management

Sixth Northwest Power Plan (2010)

Limiting Heat Loss In Buildings

Importance of Limiting Heat Flow in Buildings

- Thermal Comfort
- Condensation control
- Energy
 - Over 40% of all energy in North America is used in Buildings
 - In residential buildings, 30-60% energy is used for space-heating
 - Building enclosure must manage all mechanisms of heat-flow
- Building codes require that heat flow be controlled

Heat Flow

Fundamental Rule #1:

Heat Flows from HOT to COLD

- There are no exceptions
- You cannot prevent heat flow with insulation, you can only slow it down

Mechanisms of Heat Flow

- Conduction
 (Heat flow by touch)
- Convection
 (Heat flow by air)
 - Within Closed Air-spaces
 - **Through** air, i.e. air-leakage
- Radiation
 (Heat flow by waves)

* The focus of this presentation is on conduction and related thermal bridging.

Real World Example – What Heat Flow Mechanisms Are Occurring?

Photo credit to movie: Dumb and Dumber

Physics Refresher

• Fast physics refresher on heat flow.

Conduction

 Conduction is the transfer of energy through a solid material, and between materials that are in contact.

Practical Examples:

- Heating of a pot on an electric stove
- Heat flow through a metal window frame
- Heat flow through a steel Z-girt in a conventional exterior insulated wall assembly
- Heat flow through a concrete balcony slab

Conduction

- The rate of heat flow through a material is dependent on its conductivity (k).
 - Metric units are W/m·K
 - Imperial units are Btu/hr·ft·F°
- For example:
 - Aluminum ~160 W/mK
 - Steel ~60 W/mK
 - Stainless Steel ~14 W/mK
 - Fiberglass 0.15 to 0.30 W/mK
 - Wood ~0.10 to 0.15 W/mK
 - Insulation Materials 0.022 to 0.080 W/mK
- For building enclosure components to be thermally efficient – must minimize highly conductive materials extending through the insulation.

Conductivity Calculations

- The term, Conductance (C) is simply the conductivity (k) divided by the thickness of the material (t)
 - this is the "U-value" for a specific material

 The inverse of a material's conductance is its thermal resistance also called "R-value"

Understanding Thermal Bridging

Thermal Bridging

Steel Studs & Brick Shelf Angles

Thermal Bridging

Wood Frame

Two More Key Terms

Nominal R-value

- The R-value of just the insulation itself

Effective R-value

- The overall value of the assembly (wall), including all components, air films, and the effect of all thermal bridging.

Steel versus Wood Studs

Codes and Standards

ASHRAE 90.1

ASHRAE 90.1

- ASHRAE 90.1 three methods to comply with wall thermal performance requirements:
 - Prescriptive Path
 - Building Enclosure Trade-off Path
 - Energy Cost Budget Path

 ASHRAE 90.1 stipulates that wall R-values must consider the effect of thermal bridging, to be representative of actual thermal performance

ASHRAE 90.1 – Prescriptive Table Zone 5 example

TABLE 5.5-5 Building Envelope Requirements For Climate Zone 5 (A,B,C)*

	Nonresidential		1	Residential		Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maxi- mum	Insulation Min. R-Value	
Roofs							
Insulation Entirely above Deck	U-0.063	R-15.0 ci	U-0.063	R-15.0 ci	J-0.173	R-5.0 ci	
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0	
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.053	R-19.0	
Walls, Above-Grade							
Mass	U-0.123	R-7.6 ci	U-0.090	R-11.4 ci	U-0.580	NR	
Metal Building	บ-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.123	R-11.0	
Steel-Framed	U-0.084	R-13.0 + R-3.8 ci	U-0.064	R-13.0 + R-7.5 ci	U-0.124	R-13.0	
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0,089	R-13.0	
Wall, Below-Grade							
Below-Grade Wall	C-1.140	NR.	C-1.140	NR	C-1.140	NR.	
Floors							
Mass	U-0.087	R-8.3 ci	U-0.074	R-10.4 ci	U-0.322	NR.	
Steel-Joist	U-0.052	R-19.0	U-0.038	R-30,0	U-0.069	R-13.0	
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R30.0	U-0.066	R-13.0	
Slab-On-Grade Floors							
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR	
Heated	F-0.840	R-10 for 36 in.	F-0.840	R-10 for 36 in.	F-1.020	R-7.5 for 12 in.	

What are we doing? Does it work?

Conventional Exterior Insulated Wall Assemblies

Single Continuous Z-girt

Effective R-values

Exterior Insulation	Galvanized Z-Girt
3 ½" Mineral Fiber (R-14.7)	7.4
4" Mineral Fiber (R-16.9)	7.8
8" Mineral Fiber (R-33.6)	9.8

• Not feasible to meet ASHRAE 90.1 minimum prescriptive requirement of R-15.6 effective with continuous girts.

Thermal Weight of Girts

Exterior Insulation	Galvanized Z-Girt
8" Mineral Fiber (R-33.6)	9.8

- How much heat is flowing through steel vs field of wall?
- Use U-values for calculation isolate effect of steel:
 - Nominal U-value: 1/33.6 = 0.030
 - Effective U-value: 1/9.8 = 0.102
 - Effect of presence of girt: 0.102 0.030 = 0.0723
 - Thermal weight of girt: 0.0723 / 0.102 = 71%
- 71% of the total heat loss flows through the steel girt.
- Diminishing returns.

Crossing Z-girts

Effective R-values

Clip Assembly, Exterior Insulation	Purchased Insulation R- value	Effective Insulation R- value	% Effectiveness of Insulation	Effective Wall R- value
4" Mineral Fiber (R-16.9) , Crossing Z-Girt	16.9	8.2	49%	11.4
4" Mineral Fiber (R-16.9) , Crossing Z-Girt (w/ ½ thermal shim between girts)	16.9	10.0	59%	13.1
6" Sprayfoam* (~R-36), Crossing Z-Girt	36.0	12.5	35%	15.6

• R-36 insulation was required to achieve R-15.6 effective

Steel Clips

Effective R-values

Exterior Insulation	Galvanized Steel Clip		
3 ½" Mineral Fiber (R-14.7)	11.3		
4" Mineral Fiber (R-16.9)	12.4		
6" Mineral Fiber (R-25.1)	15.6 *		

• R-25 insulation was required to achieve R-15.6 effective

So what's the answer? How do we actually meet R-15.6?

Well, if steel reduces the insulation value by *half*, then obviously, we just need *twice as much of everything*, right?

This is not the most practical answer...

OK, let's solve this...

Must-haves...

- Need to reduce thermal bridging of cladding supports, while keeping the following characteristics:
 - Acceptable in non-combustible
 - Appropriate substrate for cladding fasteners
 - Rigid enough for cladding attachment, and other loading
 - Inorganic (won't rot)
 - Low thermal expansion/contraction
 - Won't creep or deform over time (this might eliminate thermoplastics)
 - Easy to construct
 - Cost effective

Cascadia Clip

Fiberglass Thermal Spacer

Low-conductivity fiberglass material reduces thermal bridging. This greatly improves the effective thermal performance of the wall.

Need A Solution Without A Sacrifice

- Exterior insulated walls with typical girts:
 - Durable; good moisture management
 - Easy to sequence and to QC
 - Thermally poor

• For a THERM model, there's no such thing as "nice curves"

So...

What to improve?

 Where does the improvement of insulation make the most economical sense?

Target weak points...

- 2200 SF
- 2 levels above grade
- 25 years old
- \$2,400 per year on energy

- Roof R-25 nominal (approx)
- Walls R-10 effective (approx)
- Windows R-1 effective (approx)

If I had only enough money to improve one assembly, which one should it be?

 Roof R-25 effective 	(approx)	35% area
---	----------	----------

- Walls R-10 effective (approx)
 50% area
- Windows R-1 effective (approx)
 15% area

- Goal: Calculate the improvement that affects the overall R-value the most.
- Tool: Online area-weighted multi-assembly R-Value calculator:
- http://www.cascadiawindows.com/

- Let's assume that each upgrade cost about the same
- Starting overall R-value: R-4.6
- Roof R-25 eff (approx)
 - Improve to R-50 eff
 - New overall R-value: R-4.8
 - Overall % improvement: 4%

- Let's assume that each upgrade cost about the same
- Starting overall R-value: R-4.6
- Walls R-10 eff (approx)
 - Improve to R-20 eff
 - New overall R-value: R-5.3
 - Overall % improvement: 15%

- Let's assume that each upgrade cost about the same
- Starting overall R-value: R-4.6
- Windows R-1 eff (approx)
 - Improve to R-2 eff
 - New overall R-value: R-7.2
 - Overall % improvement: 57%
- Further improve windows to R-4
 - New overall R-value: R-9.8
 - Overall % improvement: 113%

Case study – my house \$\$\$ conclusions

Roof overall improvement: 4%

Walls overall improvement: 15%

• Windows overall improvement: 113%

Costs:

- Energy per year: \$2,400

- Energy used for heating: \$1,200 (at least)

- Portion of heating energy lost to conduction: \$800 (about 70%)

Annual savings from improvements:

- Roof: \$34

- Walls: \$92

- Windows: \$424

Other factors: small house, cheap energy

Conclusions

Remember this?

•How much heat is flowing through steel vs field of wall?

How about:

- •How much heat is flowing through the weakest point vs rest of the building?
- •To reduce conductive heat losses, target the thermally weakest link in the entire enclosure, to gain the highest percentage return on investment.

Bonus:

- •If you do address weak points, do further improvements (roof and walls) then have a greater benefit?
- •Let's try more scenarios:
- http://www.cascadiawindows.com/